The 11th Asia Pacific Transportation Development Conference & 29th ICTPA Annual Conference, ICTPA2016 May 27~29, 2016 Hsinchu, Taiwan

Pavement Strengthening by In-Situ Rehabilitation & Semi-Rigid Pavement Methods

 Wu, D.Q. and Zhang, Y.L.

 Chemilink Technologies Group, Singapore

Table of Contents

- 1. Introduction
- 2. In-Situ Rehabilitation (ISR) for Base and Sub-Base
- 3. Semi-Rigid Pavement (SRP) for Surface Layer
- 4. Recommendations for Pavement Strengthening Patters and Typical Thicknesses of SRP Applications
- 5. Conclusions
- 6. References

1. Introduction

- 1. To build <u>Stronger</u>, <u>Effective</u> and <u>Durable</u> pavements in <u>Fast</u>, <u>Green</u> and <u>Sustainable</u> manner, especially in South-East Asia with poor soil and reveres climatic conditions is a challenge.
- 2. In-situ rehabilitation (ISR), with appropriate chemical stabilizing binders for soils, stones, solid wastes and their mixtures to form the "Floating Semi-Rigid Platform" so as to strengthen the pavement, has been practiced for past 20 over years with confirmation to serve the purposes of better pavements.
- 3. Semi-rigid pavement (SRP) surface system has been also explored and applied, especially in Singapore and Malaysia for past more than 10 years, to provide better performances for surface areas with heavy wear/tear and various chemical attack; and this latest technological solution can well function like concrete but be maintained like asphalt concrete.
- 4. A total solution by combining the both ISR and SRP systems can build a complete well-performed pavement from bottommost sub-grade to surface wearing layer.

- 1. As traffic loading and frequency increase, the conventional method with natural materials and mechanical compaction can not meet higher technical requirements on various performances; while the poor soil sub-grade especially in South-East Asia can not also provide a satisfactory substrate to support pavements, while rich rainfall will quickly cause failure of pavements formed by bulk materials.
- 2. The pavement layers from upper layer of sub-grade to base course can be strengthened or stabilized by appropriate bio-chemical or chemical binders to form the "Floating Semi-Rigid Platform" especially over the soft or swampy ground so as to serve the purpose of building better and durable pavements.
- 3. To rehabilitate the in-situ soils, stones, some solid wastes and their mixtures using chemical stabilization method which can maximize the usage of local waste materials with faster construction rate is obviously green and sustainable. It is very useful for both quick road maintenance and new road construction.
- 4. In-situ rehabilitation mainly includes three simple steps: <u>spreading</u> binder; insitu <u>mixing</u> binder with local materials and then <u>compaction</u>.

Figure A1. 1-d to 930-d In-situ CBR of Rehabilitated Base

Achieved for Malaysia PWD Roads (2012-2015)

Falling Weight Deflectometer (FWD) Test Results for Perak JKR Roads - Federal JKR, Malaysia

Figure A2. Stiffness Modulus of Chemilink Stabilized Base (1~3 Years)

a) Road partially closed from mid-night for maintenance

b) Road re-open for public early next morning

c) Cored samples of rehabilitated in-situ materials

Figure 1. A Rehabilitated City Road in 2000 (after Wu, 2011)

a) Singapore Airport Runway

b) Malaysia Airport Taxiway

Figure 2. ISR for Widening of Runway and Taxiway

a) Taxiway-A

b) Taxiway-B

c) Runway

Figure 3. Damaged Runway and Taxiways

Figure A3. Mix-Design with Average CBR at 7-Day

Figure 4. Design Drawing of ISR for Damaged Pavement Sections (Full-Strength)

a) In-Situ Mixing in Progress

b) Newly Rehabilitated Taxiway in Use

Figure 5. In-Situ Rehabilitation for Full-Strength Taxiways

Figure A4. Field Test Results for ISR.

- * Semi-Rigid Pavement (SRP) has been used for wearing course of pavement
- * SRP formed by <u>Porous (or Open) Asphalt Concrete</u> fully filled by <u>Polymer</u> <u>Modified Cement Mortar</u> (or called <u>Grout</u> material)

Figure 6. Composition of Semi-Rigid Pavement (SRP)

Table 1. Comparison of Three Typical Types of Pavements

Compared properties (selected properties)	Flexible Pavement	Rigid Pavement	Semi-Rigid Pavement (SRP)
1. Resistance to rutting/deformation	Poor	Good	Good
2. Skid resistance properties	Good Poor		Good
3. Resistance to petroleum products, oil and chemical	Poor	Good	Good
4. Resistance to moisture damage	Poor	Good	Good
5. Maintenance and repair	Easy	Difficult	Easy
6. Life span	Short	Long	Long
7. Flexural strength properties	Low	High	High
8. Expansion joint	Not required	Required	Not required
9. Installation and open to traffic	Within hours	0.5-3.0 months	Within 24 hours
10. Construction and maintenance costs	Lower const. cost; High maint. cost	Higher const. cost; Low maint. cost	Low const. cost; Low maint. cost

Machine Mixing

Manual Mixing

Checking Fluidity

Checking Fluidity by P Funnel

Filling with Grout Material

Raking and Brushing

Vibration (optional)

Right after Filling

Hardened

Figure 7. Installation Procedure of SRP

Airport Parking Apron

Expressway Entry Section

Airport Runway Entry Section 75mm x 2 layers

Turning Zone for Heavy Loading Vehicles

Road Junction

Parking Area for Heavy Loading Vehicles

Heavy Loading Road

SRP at 50,75,100mm thick

Figure 8. Selected Typical Applications of SRP in Singapore (2006~2015)

Figure A5. Singapore Tuas MRT/Bus Depot Using SRP System (100mm thick, 2016)

4. Recommendations

Table 2. Recommended Quick Pavement Strengthening Patterns

Pattern No	Existing Conditions	Key	Estimated Construction	
		Description	Rate	Remarks
	General damaged; heavy	#1 Rehabilitate base (300mm)	500mX(3.5~6.0)m per	Most common
1	operational road		12 working hours	case
	Similar to No. 1 but	#1 Top-up CR as new base and	350mX(3.5~6.0)m per	CR: Crusher Run.
2	existing base is hardly to	stabilize it (300mm), while	12 working hours	Road level
	be rehabilitated	converting existing base as sub-		increased
		base		
	Foundation is very weak	#1 Rehabilitate existing base as	250mX(3.5~4.5)m per	Road level
3	or with higher water table;	sub-base (300mm);	12 working hours	increased
	Updating road grade	#2 Top-up CR as new base and		
		stabilize it (250~300)mm		
	Serious damaged;	#1 Make existing surface rough;	200mX(3.5~4.5)m per	Using existing
4	Others similar to No. 3	#2 Top up CR as sub-base and	12 working hours	road as sub-
		stabilize it (300mm);		grade;
		#3 Top up CR as base and stabilize		Road level
		it (250~300)mm		increased
	Damaged surface materials	#1 Rehabilitate existing surface	400mX(3.5~6.0)m per	Purposely
5	recyclable;	materials together with new CR	12 working hours	increase
	Higher water table	(300mm)		pavement
				elevation
	Surface sudden drop	#1. Rehabilitate existing sub-base	200mX(3.5~4.5)m per	Preferably
6	between non- & free	over through both zones	12 working hours	incorporated with
	settlement zones;	(250~300)mm;		grouting system
	On embankment and/or	#2 Rehabilitate the back-filled		for long-term
	week soils	existing base materials over		performance
		through both zones (250~300mm)		

4. Recommendations

Figure A6. Six Quick Strengthening Patterns

4. Recommendations

Table 3. Recommended Typical Thicknesses for SRP Applications

No	SRP Thickness	Application Scope	Remarks
1	50mm	Most commonly used; road junction, heavy loading road section; bus lane and stop; parking apron	MinimumSRPthickness;1layeronly
2	75mm	Heavier loading zone; parking apron;	1 layer only
3	100mm	Permanent heavier loading/chemical-attack zone; bus depot/terminal;	1 layer of 100mm or 2 layers of 50mm each
4	150mm	Specially strengthening area; taxiway turning section; runway initial taking-off section	2 layers of 75mm each

5. Conclusions

- In-Situ Rehabilitation (ISR) or Stabilization is a proven engineering approach in quickly strengthening pavements and it is remarkably green and sustainable, which indicates a developing direction in new construction and maintenances/repair of various existing pavements.
- Semi-Rigid Pavement (SRP) is a high effective wearing course in increasing surface performances and lifespan, which has fully combined advantages of both rigid and flexible pavements.
- Typical applications with appropriate quick strengthening patterns for ISR and in different thicknesses for SRP have been recommended and more engineering exercises could be conducted based on the local conditions.
- This paper provides a workable total solution for quick strengthening various pavements from bottommost sub-grade to surface wearing layer, deduced from numerous proven engineering practices for past 10 to 20 years in South-East Asia.

6. References

- CPRU (1999). "General Specification for Pavement Stabilization", GS 07:1999, *Construction Planning and Research Unit (CPRU)*, Ministry of Development, 1st Edition, Brunei Darussalam.
- Gawedzinki, M. (2008) "Evaluation of Semi-Flexible (Resin Modified) Pavement I2008-1", Illinois Department of Transportation Bureau of Materials and Physical Research, USA.
- Huang, F., Romy, T., Wu, D.Q. and Shazali, B. (2014). "A Quick Repair Approach for Damaged Roads in West Malaysia", 9th Malaysian Road Conference, November 10-12, 2014, Kuala Lumpur, Malaysia.
- Koh, M.S., Lim, B.C. and Wu, D.Q. (2005). "Chemical-Soil Stabilization for Runway Shoulders Widening at Singapore Changi Airport", 4th Asia Pacific Conference on Transportation and Environment (4th APTE Conference), November 8-10, 2005, Xi'an, PR China.
- Michael, L., Tan, P.C., Daud and Wu, D.Q. (2010). "Green Approach to Rural Roads Construction Stabilization of In-situ Soils and Construction Wastes", the 7th Asia Pacific Conference on Transportation and the Environment (APTE 2010), June 3-5, 2010, Semarang, Indonesia.
- Mitchell, J.K. and Katti, R.K. (1981). "Soil Improvement State-of-the-Art-Report", Proc. of the 10th Inter. Conf. On SMFE, Vol. 1, pp. 261-317.
- Myles, G.T. (1950). "Soil Cement Stabilized Roads in Brunei", Borneo, Brunei PWD Report No. 83901.
- Safry, K.A., Wu, D.Q. and Huang, F. (2013). "Over-Coming Differential Settlement in Soft Grounds Using 'Floating Semi-Rigid Pavement'", 14th REAAA Conference 2013, March 26-28, 2013, Kuala Lumpur, Malaysia, pp. 445-452.
- Sai, Q.L. (1998). "Asphalt Pavement on Semi-Rigid Roadbase for High-Class Highways", 1st Edition, CIP (97) No. 23311, Beijing, PR China, 1,025 pp. (in Chinese).
- Suhaimi, H.G. and Wu, D.Q. (2003). "Review of Chemical Stabilization Technologies and Applications for Public Roads in Brunei Darussalam", *Journal of Road Engineering Association of Asia & Australia*, Vol. 10, No. 1, PP7021/8/2003, pp. 42-53.
- Wu, D.Q. (2011). "A Green and Effective Approach for Pavements in Tropical Region", the 24th ICTPA Annual Conference & NACGEA International Symposium on Geo-Trans, May 27-29, 2011, Irvine, Los Angeles, California, USA, the Proceeding of the Conference No. S3-008, pp. 1-12.
- Wu, D.Q. (2012). "Sustainable Pavement Construction/Maintenance by Green Approaches of In-Situ Stabilization & Rehabilitation", Seminar on Sustainability of Pavement in Highway Design, Construction & Maintenance, Malaysian Highway Authority, February 21, 2012, Selangor, Malaysia.
- Wu, D.Q. and Sun, D.J. (2008). "Higher-Performance Topping Material for Semi-Rigid Pavement", 13th Singapore Symposium on Pavement Technology (SPT 2008), May 23, 2008, National University of Singapore.
- Wu, D.Q. and Tan, P.C. (2009). "Recycling of Unsuitable In-Situ Soils and Construction Wastes by Chemilink Soil Stabilization", 2nd World Roads Conference Sustainable Urban Transportation Development, October 26-28, Singapore.
- Wu, D.Q., Daud and Zhang, Y.L. (2011). "The Semi-Rigid Pavement with Higher Performances for Roads and Parking Aprons", *CAFEO 29, Sustainable Urbanization Engineering Challenges and Opportunities*, November 27-30, 2011, Brunei Darussalam
- Wu, D.Q., Shaun Kumar and Tan, P.C. (2008). "Chemical-Clay Stabilization for Runway Widening at Sultan Ismail International Airport", Malaysia, 13th Singapore Symposium on Pavement Technology (SPT 2008), May 23, 2008, National University of Singapore.
- Wu, D.Q. and Yong, T.C. (2004). "Recycling of In-Situ Soils by Using Chemical Stabilization for Roads", 1st International Conference on Sustainable Waste Management, June 10-12, 2004, Singapore, pp. 227-239.
- Zhang, Y.L., David Daud and Wu, D.Q. (2010). "Important Factors on Chemilink Grouting Material of Semi-Rigid Pavement", the 15th Singapore Symposium on Pavement Technology (SPT 2010), May 27, 2010, National University of Singapore, Singapore.

Thank You for Your Attention!

